Carla Rieger, Albert T. Schmitz, Gehad Salem, Massimiliano Incudini, Sofia Vallecorsa, Anne Y. Matsuura, Michele Grossi, Gian Giacomo Guerreschi • Published: 2026-02-09
Quantum chemistry and materials science are among the most promising areas for demonstrating algorithmic quantum advantage and quantum utility due to their inherent quantum mechanical nature. Still, large-scale simulations of quantum circuits are essential for determining the problem size at which quantum solutions outperform classical methods. In this work, we present a novel hybrid simulation ap...
Viviana Centritto, Ama Bandara, Heqi Deng, Masoud Babaie, Evgenii Vinogradov, Sergi Abadal, Eduard Alarcon • Published: 2025-10-15
Scaling quantum computers from a few qubits to large numbers remains one of the critical challenges in realizing practical quantum advantage. Multi-core quantum architectures have emerged as a promising solution, enabling scalability through distributed quantum processing units (QPUs) interconnected via classical and quantum links. However, the bottleneck of wired connections persists, as densely ...
Apurav, Jaskaran Singh • Published: 2026-02-09
Linear optical quantum computation (LOQC) offers a promising platform for scalable quantum information processing, but its scalability is fundamentally constrained by the probabilistic nature of non-local entangling gates. Qudit circuit compression schemes mitigate this issue by encoding multiple qubits onto qudits. However, these schemes become inefficient when only a subset of the encoded qubits...
Huan-Chao Gao, Guo-Zhu Song, Hai-Rui Wei • Published: 2026-02-08
Quantum gates are the essential block for quantum computer. High-dimensional quantum gates exhibit remarkable advantages over their two-dimensional counterparts for some quantum information processing tasks. Here we present a family of entanglement-based optical controlled-SWAP gates on $\mathbb{C}^{2}\otimes \mathbb{C}^{d}\otimes \mathbb{C}^{d}$. With the hybrid encoding, we encode the control qu...
Jun Qi, Chao-Han Huck Yang, Pin-Yu Chen, Min-Hsiu Hsieh • Published: 2025-08-01
Variational Quantum Computing (VQC) faces fundamental scalability barriers, primarily due to barren plateaus and sensitivity to quantum noise. To address these challenges, we introduce TensorHyper-VQC, a novel tensor-train (TT)-guided hypernetwork framework that significantly improves the robustness and scalability of VQC. Our framework fully delegates the generation of quantum-circuit parameters ...
Takanori Nishi • Published: 2025-08-27
Quantum information processing using local modes of trapped ions has been applied to implementing bosonic quantum error correction codes and conducting efficient quantum simulation of bosonic systems. However, control of entanglement among local modes remains difficult because entanglement among resonant local modes is governed by the Coulomb interaction, which is not switchable. We propose a meth...
Yong Liu, Guangyao Huang, Yizhi Wang, Junjie Wu • Published: 2025-06-10
Solving quantum many-body systems is one of the most significant regimes where quantum computing applies. Currently, as a hardware-friendly computational paradigms, variational algorithms are often used for finding the ground energy of quantum many-body systems. However, running large-scale variational algorithms is challenging, because of the noise as well as the obstacle of barren plateaus. In t...
Wenhan Guo, Mikhail Litvinov, Tzu-Chieh Wei, Abid Khan, Kevin C. Smith • Published: 2026-02-06
We investigate a constant-time, fusion measurement-based scheme to create AKLT states beyond one dimension. We show that it is possible to prepare such states on a given graph up to random spin-1 `decorations', each corresponding to a probabilistic insertion of a vertex along an edge. In investigating their utility in measurement-based quantum computation, we demonstrate that any such randomly dec...
Riley W. Chien, Mitchell L. Chiew, Brent Harrison, Jason Necaise, Weishi Wang, Maryam Mudassar, Campbell McLauchlan, Thomas M. Henderson, Gustavo E. Scuseria, Sergii Strelchuk, James D. Whitfield • Published: 2026-02-06
Quantum computers are expected to become a powerful tool for studying physical quantum systems. Consequently, a number of quantum algorithms for studying the physical properties of such systems have been developed. While qubit-based quantum computers are naturally suited to the study of spin-1/2 systems, systems containing other degrees of freedom must first be encoded into qubits. Transformations...
Zhengyan Darius Shi, Zhaoyu Han, Srinivas Raghu, Ashvin Vishwanath • Published: 2026-02-06
Topological superconductors (TSCs) provide a promising route to fault-tolerant quantum information processing. However, the canonical Majorana platform based on $2e$ TSCs remains computationally constrained. In this work, we find a $4e$ TSC that overcomes these constraints by combining a charge-$4e$ condensate with an Abelian chiral $\mathbb{Z}_3$ topological order in an intertwined fashion. Remar...