Soubhadra Maiti, Guus Avis, Sounak Kar, Stephanie Wehner • Published: 2026-02-04
We investigate the hardware requirements for quantum teleportation in an intercity-scale network topology consisting of two metropolitan-scale networks connected via a long-distance backbone link. Specifically, we identify the minimal improvements required beyond the state-of-the-art to achieve an end-to-end expected teleportation fidelity of $2/3$, which represents the classical limit. To this en...
Hiu Yung Wong • Published: 2026-02-04
The superconducting qubit quantum computer is one of the most promising quantum computing architectures for large-scale integration due to its maturity and close proximity to the well-established semiconductor manufacturing infrastructure. From an education perspective, it also bridges classical microwave electronics and quantum electrodynamics. In this paper, we will review the basics of quantum ...
Laurin E. Fischer • Published: 2026-02-04
Quantum computing promises to revolutionize several scientific and technological domains through fundamentally new ways of processing information. Among its most compelling applications is digital quantum simulation, where quantum computers are used to replicate the behavior of other quantum systems. This could enable the study of problems that are otherwise intractable on classical computers, tra...
Alessandro Pierro, Jonathan Timcheck, Jason Yik, Marius Lindauer, Eyke Hüllermeier, Marcel Wever • Published: 2026-02-04
Spatial accelerators, composed of arrays of compute-memory integrated units, offer an attractive platform for deploying inference workloads with low latency and low energy consumption. However, fully exploiting their architectural advantages typically requires careful, expert-driven mapping of computational graphs to distributed processing elements. In this work, we automate this process by framin...
Jonathan C. Marcks, Emily Eagen, Emma C. Brann, Merritt P. Losert, Talise Oh, J. Reily, Christopher S. Wang, Daniel Keith, Fahd A. Mohiyaddin, Florian Luthi, Matthew J. Curry, Jiefei Zhang, F. Joseph Heremans, Mark Friesen, M. A. Eriksson • Published: 2025-04-16
Quantum dots in SiGe/Si/SiGe heterostructures host coherent electron spin qubits, which are promising for future quantum computers. The silicon quantum well hosts near-degenerate electron valley states, creating a low-lying excited state that is known to reduce spin qubit readout and control fidelity. The valley energy splitting is dominated by the microscopic disorder in the SiGe alloy and at the...
Chiara Vercellino, Giacomo Vitali, Paolo Viviani, Alberto Scionti, Olivier Terzo, Bartolomeo Montrucchio, Pascal Jahan Elahi, Ugo Varetto • Published: 2026-02-04
Achieving ubiquitous global connectivity requires integrating satellite and terrestrial networks, particularly to serve remote and underserved regions. In this work, we investigate the design and optimization of Space-Terrestrial Integrated Networks (STINs) using a hybrid quantum-classical approach. We formalize three key combinatorial optimization problems: the Satellite Selection Problem (SSP), ...
Shane McFarthing, Aidan Pellow-Jarman, Francesco Petruccione • Published: 2026-02-01
Sample-based quantum diagonalization (SQD) offers a powerful route to accurate quantum chemistry on noisy intermediate-scale quantum (NISQ) devices by combining quantum sampling with classical diagonalization. Here we introduce HSQD, a novel half-qubit SQD approach that halves the qubit requirement for simulating a chemical system and drastically reduces overall circuit depth and gate counts, supp...
Abdoulaye Diack, Perry Nelson, Kwaku Agbesi, Angela Nakalembe, MohamedElfatih MohamedKhair, Vusumuzi Dube, Tavonga Siyavora, Subhashini Venugopalan, Jason Hickey, Uche Okonkwo, Abhishek Bapna, Isaac Wiafe, Raynard Dodzi Helegah, Elikem Doe Atsakpo, Charles Nutrokpor, Fiifi Baffoe Payin Winful, Kafui Kwashie Solaga, Jamal-Deen Abdulai, Akon Obu Ekpezu, Audace Niyonkuru, Samuel Rutunda, Boris Ishimwe, Michael Melese, Engineer Bainomugisha, Joyce Nakatumba-Nabende, Andrew Katumba, Claire Babirye, Jonathan Mukiibi, Vincent Kimani, Samuel Kibacia, James Maina, Fridah Emmah, Ahmed Ibrahim Shekarau, Ibrahim Shehu Adamu, Yusuf Abdullahi, Howard Lakougna, Bob MacDonald, Hadar Shemtov, Aisha Walcott-Bryant, Moustapha Cisse, Avinatan Hassidim, Jeff Dean, Yossi Matias • Published: 2026-02-02
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognit...